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Summary (English)

The goal of this project is to develop the navigation and guidance system for
an autopilot for a small fixed-wing unmanned aircraft. The navigation system,
which is implemented as a Kalman filter, will use the attitude and sensor mea-
surements from accelerometer, GPS, airspeed sensor and barometer to estimate
the position and velocity of the aircraft along with the wind speed. The guid-
ance system will be implemented as a Dubins path and vector fields which takes
a set of waypoints and an estimate of the position and outputs set-points for
the low level controllers on the airplane in order to make it follow the desired
path. The full system is tested in simulation and the results are analysed. The
final navigation and guidance systems are implemented in C and C++.



ii



Summary (Danish)

Formålet med dette projekt er at udvikle navigations- og guidancesystemet til en
autopilot beregnet til et mindre ubemandet fastvingefly. Navigationssystemet,
som er implementeret som et Kalmanfilter, bruger orienteringen og sensorinputs
fra accelerometer, GPS, pitotrør og barometer til at estimere fartøjets position
og hastighed samt vindhastigheden. Guidancesystemet vil blive implementeret
som Dubinskurver og vektorfelter. Det får et sæt navigationspunkter samt den
estimerede position som inputs og giver referencerne til fartøjets grundlæggende
regulatorer for at få det til at følge den planlagte rute. Det samlede system er
simuleret og resultaterne af dette er analyseret. Det endelige navigations- og
guidancesystem er implementeret i C og C++.
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Preface

This report was composed by Kristian Sloth Lauszus (s123808) and Mads Friis
Bornebusch (s123627) at DTU Space at the Technical University of Denmark
(DTU). The project was supervised by José M.G. Merayo from DTU Space
and Roberto Galeazzi from DTU Electrical Engineering. The duration of the
project was from 1st of February 2016 to 24th of June 2016. The workload of
the project was 10 ECTS-points per person. The development was carried out
at the offices of Danish Aviation Systems. The detailed plan of the project with
milestones and weekly tasks is shown in Appendix A.

In the first part of the report the theory for the navigation system will be
presented and implemented. The next part deals with the theory and imple-
mentation of a guidance system that allows a fixed-wing aircraft to fly between
different waypoints.

In the final part the two systems will be combined and simulated. The simulation
results will then be presented, future work proposed and a conclusion to the
project outlined.

Kristian Sloth Lauszus Mads Friis Bornebusch
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Chapter 1

Introduction

The use of unmanned aerial vehicles (UAVs) are becoming more and more
widespread. UAVs are found in all forms from hobby drones such as multirotors
or model airplanes of various sizes to full size airplanes used for surveillance and
warfare. The low cost of sensors is opening up the market for small autonomous
drones used for commercial purposes such as aerial photography, videography,
farming, goods delivery, meteorological surveying, traffic monitoring or search
and rescue operations (Geographic, 2013). The demand for cheap UAVs is there-
fore high. The type of UAV determines the properties of it. When considering
small UAVs there are two main types. There is the fixed-wing UAVs and multi-
rotors, each of them having their own advantages and disadvantages. The main
advantages of fixed-wing UAVs is the fact that they have long endurance and
generally higher payload capability while the advantages of multirotors are that
they can land and takeoff vertically and hover.

For a UAV to fulfil its purpose it is crucial that it can be controlled and pro-
grammed to fly a specific route autonomously. This requires sensors and software
on-board the UAV that can estimate the orientation, position and velocity of it.
These estimates can be used by other software to control the actuators on the
UAV making it follow the desired path.
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1.1 Project aim

The purpose of this project is to create an autopilot for a small fixed-wing UAV.
The project was carried out for the company Danish Aviation Systems1 who are
developing a flight controller for a range of different UAVs. A flight controller
has to do a multitude of tasks in order to control a UAV. It has to take sensor
inputs, communicate with a ground station, keep track of the mission and pilot
the aircraft. The system which is responsible for the latter is the autopilot and
it consists of a number of subsystems. A block diagram of a simple autopilot
for a UAV is shown on Figure 1.1.

Figure 1.1: Block diagram of an autopilot on a UAV. This project will focus on
the implementation of the subsystems shown in green. The con-
trollers which are shown in yellow were implemented in simulation
to be able to test the full system

The subsystems shown in green, the navigation system and the guidance system,
is what this project will focus on, while the controllers, shown in yellow, will
be implemented in order to simulate the full system. The navigation system
is the part that takes the measurements from the sensors and estimates the
orientation, velocity and position of the aircraft. This project will be limited

1http://www.danishaviationsystems.dk

http://www.danishaviationsystems.dk
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to the part of the navigation system that estimates the position and velocity.
The guidance system calculates the desired path from a set of waypoints and
determines the low level controller set-points given the position estimate. The
guidance system will be limited to not consider autonomous takeoff and landing.

As the guidance and navigation systems are supposed to be used as part the full
flight controller, the implementation of the systems will be the main focus of the
project. To keep development time down, all testing will be done in Matlab and
only the final algorithms will be implemented in C and C++ to be compatible
with the full flight controller.

1.2 Requirements

The requirements of the system is based on the following being provided by
Danish Aviation Systems:

• Sensor measurements in SI units

• Orientation estimate as Euler angles or quaternions

• Controllers

• Airframe and flight controller hardware

The airframe which is expected to be provided is a flying wing type UAV which
flies slower than 50 km/h. The product of this project should be the following
two systems:

• Navigation system: Given sensor measurements and a orientation estimate
it should estimate the position and velocity

• Guidance system: Given waypoints and position estimate it should calcu-
late the desired path and give set-points for the controllers

Since the required airframe and flight controller hardware was not provided by
Danish Aviation Systems in due time, we decided to focus on implementing the
navigation and guidance system in a simulated environment. The implemented
systems were then converted to C and C++ code, thus allowing the navigation
and guidance system to be implemented on an embedded platform in the future.



4 Introduction

The project agreement with Danish Aviation Systems which contains the initial
requirements is shown in Appendix B.

The source code for the project will not be included in the written report, but
can be requested for research purposes by contacting the authors.



Chapter 2

Navigation system theory

This chapter will briefly explain the theory necessary for designing the navi-
gation system for a fixed-wing UAV. The reference frames used in the naviga-
tion system design will be explained along with the necessary transformations
between reference frames. This is necessary since the different sensor measure-
ments are in different reference frames. Dynamical systems will be explained,
as will how to get the system description on linear state space form in both
continuous and discrete time. This will be the basis for the explanation of the
Kalman filter; an optimal observer for state estimation of a dynamic system
which is a critical part in the UAV navigation system.

2.1 Reference frames

Two different reference frames will be used in this project. One of them is the
body frame and the other is the inertial frame. These will be described in the
following sections.
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2.1.1 Body frame

The body frame is the frame of reference which is aligned with the UAV body.
It is a rectangular coordinate system where the origo is at the center of gravity
of the UAV with the x-axis going through the nose, the z-axis going through
the bottom and the y-axis completing a right handed coordinate system. The
body frame coordinate system is shown in Figure 2.1. This coordinate system
will be referred to as body frame and coordinates in this frame of reference will
have x, y and z subscripts.

Figure 2.1: Body frame coordinate system. Figure is from Farrell (2008, page
26)

When considering a specific implementation of a system, two other reference
frames might need to be considered. One of those is the platform frame at
which the sensors are attached. Introducing this reference frame can compen-
sate for misalignments in the sensor placement with respect to the body frame.
However, the transformation from this frame to body frame can be determined
in the design stage and the sensor measurements transformed accordingly, or if
the difference between this and the body frame is small, it can be ignored. An-
other frame of reference is the instrument frame. Introducing this, compensates
for misalignement between the instrument axes. If high quality sensor data is
required from sensors of low quality this frame of reference will definitely have
to be considered. For the purpose of this project it will be ignored.
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2.1.2 Inertial frame

An inertial frame is a frame of reference where Newtons laws of motion applies.
This means that an inertial frame can be in constant motion but it does not
accelerate. The inertial frame in this project will be the local geodetic frame,
which is a rectangular coordinate system with origin in a point on the surface
of the Earth. The x-axis of the coordinate system points in the direction of
the north pole, the z-axis points down and the y-axis points east and completes
the right handed coordinate system. This coordinate system is shown in Figure
2.2. Coordinates in this frame will be denoted with N, E and D subscripts.
The advantage of this coordinate system is that the coordinates are easy to
understand intuitively as the origo is on the surface of the Earth. When a map
projection is used to project points on the surface of Earth into this coordiante
system, the disadvantage of this system is a high distortion when the distance
to the origo is large.

Figure 2.2: Local geodetic coordinate system in relation to the ECEF coordi-
nate system. Figure is from Farrell (2008, page 25)

To calculate the NED-coordinates in the local geodetic frame from latitude, lon-
gitude and altitude GPS coordinates, a stereographic projection is used. The
stereographic projection is a projection of a sphere on a tangent plane. An ex-
ample of this projection is shown in Figure 2.3. The figure shows the projection
of a point P on the sphere into P ′ in the plane. The origo of the stereographic
projection S is the intersection of the plane and the sphere. Points are projected
on a straight line from the point on the sphere opposite the origo into the plane.

The formula relating the latitude and longitude coordinates to the x and y
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Figure 2.3: Stereographic projection. The origo S is the intersection of the
plane and sphere. The point P on the sphere is projected into P ′
in the plane

coordinates in the projection plane is given in Snyder (1987, page 157) as:

x = Rk (cos(ϕ0) sin(ϕ)− sin(ϕ0) cos(ϕ) cos(λ− λ0))

y = Rk cos(ϕ) sin(λ− λ0)

k =
2k0

1 + sin(ϕ0) sin(ϕ) + cos(ϕ0) cos(ϕ) cos(λ− λ0)

(2.1)

where R is the Earth radius, ϕ is the latitude, λ is the longitude and k0 = 1 is
a scaling factor. The zero subscript on the latitude and longitude denotes the
coordinates to the intersection between the plane and the sphere. When the
projection is performed according to the formulas above, the x axis is pointing
north and the y axis is pointing east. The stereographic projection is confor-
mal which means that that angles between intersecting curves are unchanged
(Snyder, 1987, page 154). However it is clear that there is distortion in distance
which increases as a function of the distance to origo of the projection. A plot
of this is shown in Figure 2.4. This figure shows that for distances below 100 km
from the origin the error is less than 5 m. However, for large distances from the
origin the error will be substantial. A common aproach to avoid this problem
for UAVs with large operating ranges is to move the local geodetic plane along
with the airplane (Farrell, 2008, page 25).

2.1.3 Rotations

Rotations in this project will be represented as Euler angles. Euler angles are
rotations around the principal axes in a specific sequence. Rotation around the
x axis is roll, φ; around the y axis is pitch, θ and around the z axis is yaw,
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Figure 2.4: Distance error in the stereographic projection compared to great
circle distance

ψ. The rotations will be represented by a rotation matrices. Rotation with an
angle around an axis is realised with the following rotation matrices (Goldstein
et al., 2001, page 134-144) (Diebel, 2006):

Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 (2.2)

Ry(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (2.3)

Rz(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (2.4)

The subscript on R denotes the axis and the argument is the angle. A rotation
sequence is a series of rotations and the rotation sequence operator is found as a
matrix product of the above matrices. The rotation sequence used here is XYZ
rotations where the rotation is around the x axis first, then around the y axis
and in the end around the z axis.

The rotation matrix for rotating a vector from the body to initial frame is found
as:

R = [Rx(φ)Ry(θ)Rz(ψ)]
T (2.5)
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which gives:

R =

cos(ψ) cos(θ) cos(ψ) sin(φ) sin(θ)− cos(φ) sin(ψ) sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)
cos(θ) sin(ψ) cos(φ) cos(ψ) + sin(φ) sin(ψ) sin(θ) cos(φ) sin(ψ) sin(θ)− cos(ψ) sin(φ)
− sin(θ) cos(θ) sin(φ) cos(φ) cos(θ)

 (2.6)

The inverse (or transpose) of this rotation matrix will rotate the vector from
inertial frame into body frame.

2.2 Dynamic systems

Dynamic systems are systems whose beaviour, states and output change dynam-
ically as a function of time. Mathematically these systems are usually modelled
as coupled ordinary differential equations. Dynamic systems can be determin-
istic or stochastic if they are subject to noise. In the following both types will
be explained briefly.

2.2.1 Deterministic dynamic systems

The mathematical description of a dynamic system can be written as (Hendricks
et al., 2008, page 28):

ẋ(t) = f(x(t),u(t), t) (2.7)
where x(t) is the system state vector, u(t) is the input to the system and f is
the system function. The function f of the state can be a time variant linear
or nonlinear function. The output of such a system is (Hendricks et al., 2008,
page 29):

y(t) = g(x(t),u(t), t) (2.8)

2.2.2 Stochastic dynamic systems

All realistic systems will be subject to noise. Noise is stochastic or random
processes and they will in this project be assumed normally distributed and
white. They can therefore be characterized by a mean µ and standard deviation
σ (Farrell, 2008, page 112) (Hendricks et al., 2008, page 360). In the analysis
of the noise the notions of covariance, correlation and autocorrelation will be
used. A more thorough explanation of the concepts are given in Appendix C.

A system subject to noise can be written as:

ẋ(t) = f(x(t),u(t),v1(t), t) (2.9)
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where v1(t) is the so called process noise. The output of the system is:

y(t) = g(x(t),u(t), t) + v2(t) (2.10)

where v2(t) is the measurement noise.

2.2.3 Linearization

The system is linearised by a first order Taylor expansion around a stationary
point (Hendricks et al., 2008, page 30-31) (Farrell, 2008, page 72) (Gustafsson,
2012, page 318). The linear system matrices are thus found as the Jacobians:

A(t) =
∂f(x,u,v1, t)

∂x

∣∣∣∣
x0(t),u0(t)

B(t) =
∂f(x,u,v1, t)

∂u

∣∣∣∣
x0(t),u0(t)

Bv(t) =
∂f(x,u,v1, t)

∂v1

∣∣∣∣
x0(t),u0(t)

(2.11)

The linear output matrices are found in a similar way:

C(t) =
∂g(x,u,v2, t)

∂x

∣∣∣∣
x0(t),u0(t)

D(t) =
∂g(x,u,v2, t)

∂u

∣∣∣∣
x0(t),u0(t)

(2.12)

The linear system can now be written as (Hendricks et al., 2008, page 13):

ẋ(t) = A(t)x(t) + B(t)u(t) + Bv(t)v1(t)

y(t) = C(t)x(t) + D(t)u(t) + v2(t)
(2.13)

This system is linear and time variant as can be seen from the time dependence
of the system matrices.

2.2.4 Discretization

A linear time invariant system can be discretized as(Hendricks et al., 2008, page
77) (Farrell, 2008, page 80):

F = eATs

G =

∫ Ts

0

eAtBdt
(2.14)
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Where Ts is the sampling time. For a slowly time varying system where A
can be considered constant within the sampling time interval t0 ≤ t ≤ t0 + TS
the discrete system matrix can be found by the Taylor expansion of the matrix
exponential (Farrell, 2008, page 144 and 241-242):

eAT = I + AT +
1

2
(AT )2 +

1

3!
(AT )3 + . . . (2.15)

This approach of first linearizing the system and then discretizing it is also
described by Gustafsson (2012, page 318). Here, another method is also shown
where the nonlinear integral equation relating the current state to the one, which
is one sample time into the future is solved. This equation is:

x(t+ Ts) = x(t) +

∫ t+Ts

t

f(x(τ),u(τ))dτ (2.16)

This will directly give the discretization of the nonlinear system which is then
linearized. This method is claimed by (Gustafsson, 2012) to give more accurate
results than the method where the system is linearized first and then discretized.
However, if it can be assumed that A and u are constant between samples, the
method in (2.14) with the matrix exponential calculated as the Taylor series in
(2.15) is preferable due to the simplicity of it. If the system linearization and
discretization can be solved analytically the end result is a set of time varying
discrete time matrices as in Farrell (2008, page 242).

2.2.5 Discrete time system

A discrete time variant system is given by:

x(k + 1) = F(k)x(k) + G(k)u(k) + Gv(k)v1(k)

y(k) = C(k)x(k) + D(k)u(k) + v2(k)
(2.17)

where F(k) is the system matrix, G(k) is the input matrix, Gv(k) is the noise
input matrix, v1 is the process noise vector, C(k) is the state output matrix,
D(k) is the direct output matrix and v2(k) is the measurement noise. For this
system it is assumed that all inputs and matrices can be considered constant
between samples. The time variance comes from the matrices being found with
analytic linearization and discretization as described previously. Depending on
the system that is linearised a more precise way to state the matrices could be:

F(x(k),u(k), k) (2.18)

and similar for the other matrices. This shows that inserting the values at which
the linearization is carried out will give a constant matrix.
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The noise in the system is given by:

v1(k) ∈ N(0,V1)

v2(k) ∈ N(0,V2)
(2.19)

where the discretization of V1 and V2 should be done as:

Qd(k) ≈ Bv(k)V1B
T
v (k)Ts

Rd ≈ V2

Ts

(2.20)

where Ts is the sample time (Farrell, 2008, page 141-142) (Hendricks et al., 2008,
414-415). For the purpose of this project, the noise matrices will be constant
as the noise is assumed to be stationary. It can be seen that the matrix Qd(k)
will be time variant due to the time variance of Gv(k). It is common to have
the outputs of a system measurd by sensors at different sampling rates. If this
is the case, the matrix Rd can not be found by dividing by a single sample time
as shown above. If V2 is diagonal, Rd is instead found as:

Rd ≈ V2

T
−1
s1

. . .
T−1sm

 = V2T
−1 (2.21)

where all empty space is zeros,m is the number of measurements and Ts1, · · · , Tsm
are the sample times for the measurements and T = diag(Ts1, · · · , Tsm).

2.3 The Kalman filter

The Kalman filter is an observer for a dynamic system. We will consider a
discrete time system like the one in (2.17) with the only exception that there
is no direct term from input to output which means that D(k) = 0 ∀ k. This
is done to simplify the equations as the system is not expected to have a direct
term. A Kalman filter for a system with a direct term is presented in Gustafsson
(2012, page 154). A dynamical system with no direct term from input to output
can be written as:

x(k + 1) = F(k)x(k) + G(k)u(k) + Gv(k)v1(k)

y(k) = C(k)x(k) + v2(k)
(2.22)

An observer uses a model of the system and measurements of the system output
to find a state estimate.
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The open form Kalman filter (also called ordinary Kalman filter) consists of two
steps; the time update of the state estimate and the measurement update of the
state estimate. The time update is where the system model is used to predict
the system states. This prediction is then corrected with the output measured
from the system in the measurement update. The state estimate is accompanied
by a state covariance matrix which also has a time update and measurement
update step. The correction of the state in the measurement update is weighted
by a gain. This gain is called the Kalman gain and it is calculated for each
time instant. This calculation is what sets the Kalman filter apart from other
observers as the Kalman gain is shown to give the minimum variance and least
square error estimates of the states (Hendricks et al., 2008, page 439).

In the following the Kalman filter equations will be presented mainly using the
notation of Hendricks et al. (2008). Denoting the state estimate x̂, the time
update can be written as:

x̂(k)− = F(k − 1)x̂(k − 1) + G(k − 1)u(k − 1) (2.23)

This equation can be recognized as a prediction of the state using the system
model. The minus superscript on x̂(k) denotes that data up to time t − 1 is
used for this estimate. The covariance time update can be written as:

Q(k)− = F(k − 1)Q(k − 1)FT (k − 1) + Qd(k − 1) (2.24)

Again the minus superscript denotes that data up to time t − 1 has been used
to calculate the state covariance matrix. After the time update step has been
performed, the Kalman gain can be calculated:

L(k) = Q(k)−CT (k)
[
C(k)Q(k)−CT (k) + Rd

]−1
(2.25)

This gain is now used to adjust the state estimate using the measurements in
the measurement update:

x̂(k) = x̂(k)− + L(k)
[
y(k)−C(k)x̂(k)−

]
(2.26)

The Kalman gain is also used to update the state covariance matrix in the
measurement update:

Q(k) = [I− L(k)C(k)]Q(k)− (2.27)

The result of running the Kalman filter is at each time instant an estimate of the
state and a covariance matrix for the state estimate which shows how certain
the estimate is.
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2.3.1 Assumptions

There are a number of necessary assumptions in the Kalman filter. For a Kalman
filter to exist for a system, the system needs to be detectable, which means that
all unobservable states are asymptotically stable. For all states to be recon-
structed by the Kalman filter at all times, the system needs to be fully ob-
servable (Hendricks et al., 2008, page 432). Another assumption is that the
process noise v1 and the measurement noise v2 are uncorrelated. This means
that E{v1(j)vT2 (k)} = 0 for all j,k. It is also assumed that there is noise on all
measurements (Hendricks et al., 2008, page 433).

2.3.2 Iterated Kalman filter

When implementing a Kalman filter, calculating the matrix inverse in (2.25) is
usually a time consuming task. However, this can be avoided if the measure-
ments are independent, that is if Rd is a diagonal matrix (Farrell, 2008, page
191) (Gustafsson, 2012, page 170). The measurement update can then be done
sequentially where the matrix inversion is a division by a scalar. A Kalman
filter implemented like this is referred to as an iterated Kalman filter. We define
the following at time k:

Q1 = Q(k)−

x̂1 = x̂(k)−

C(k) =

C1

...
Cm

 (2.28)

where m is the number of measurements and C1, · · · ,Cm are the rows in C.
The measurement update equations for this implementation is then, for i = 1
to m:

Li =
QiC

T
i

CiQiCT
i + Rdii

x̂i+1 = x̂i + Li [yi −Cix̂i]

Qi+1 = [I− LiCi]Qi

(2.29)

where Rdii is the diagonal elements in the matrix Rd. At the end of the
iterations we have:

x̂(k) = x̂m+1

Q(k) = Qm+1

(2.30)

which is equal to what was found in (2.26) and (2.27).
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2.3.3 Handling different measurement rates

If the measurements to the Kalman filter arrives at different rates, C will be
time varying, as to reflect at a given time k the measurements that are avail-
able (Poulsen, 2007, page 210). The matrix C is the matrix for a time where
all measurements are available. For a time k where some measurements are
unavailable, the corresponding rows in the matrix C(k) will be zero. In this
way, only the measurements that are available will provide information to the
Kalman filter at a given time.

2.3.4 Kalman filter performance

When implementing a Kalman filter there are several issues that has to be
adressed. Some of them are of the numerical nature and some of them are of
the analytical or theoretical nature. The numerical issues will not be adressed in
this project. The issues which will be adresed is the observability of the system
and the whiteness of the innovation process. These issues are important as they
are signs of errors or omissions in the design of the Kalman filter.

2.3.4.1 Observability analysis

One of the assumptions stated above for a Kalman filter to exist is that all
states are observable or at least detectable. For a system to be observable, the
observability Gramian has to be regular (Hendricks et al., 2008, page 148). The
observability Gramian, W0(k0, kf ) can be calculated as:

W0(k0, kf ) =

kf−1∑
i=k0

ΦT (i, k0)CT (k)C(k)Φ(i, k0) (2.31)

where Φ is the state transistion matrix defined as (Hendricks et al., 2008, page
82):

Φ(l,m) = F(l − 1)F(l − 2) . . .F(m) (2.32)

where Φ(l, l) = I and Φ(l + 1, l) = F(l). Due to the assumption that the state
and inputs are constant between samples, the Gramian takes the form of a time
invariant system when the observability is considered at a certain time instant.
If the observability test is done for every single sample, the test can be carried
out as for a time invariant system. In this case there are several methods to test
the observability. One of them is calculating the observability matrix, which for
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an observable system must have full rank. The observability matrix is given by:

MO =


C
CF
CF2

...
CFn−1

 (2.33)

where n is the rank of F. The system is observable if and only if rank(MO) = n.
However, this test is sensitive to the matrix being ill-conditioned (Paige, 1981).
Another way to test the observability is by the right eigenvectors of the system
matrix F. The matrix containing the right eigenvectors of F as columns will be
denoted VR. The system is then observable if and only if:

CVR 6= 0 (2.34)

That is is there are no zero columns in the product between C and the right
eigenvector matrix VR.

The two previous equations only applies to linear time invariant systems. In
this project they will be used on linear time variant systems where the time
variance is given symbolically. This will lead to equations for each column in
(2.34) that can be solved to find the cases in which the system is not observable.

2.3.4.2 Innovation process

The innovation process is defined as:

i(k) = y(k)−C(k)x̂(k) (2.35)

which is recognized as the part that adjusts the state estimate in (2.26). When
a perfect model of the system is used, the innovation process will be white noise
with the same intensity as the measurement noise sources (Hendricks et al.,
2008, page 446). The innovation process is the difference between the measured
output and the output predicted by the system model. If there is dynamics in
the system which are note modelled this will be present in the innovations which
means that they will not be white. Examining the whiteness of the residuals is
therefore a way to assess if a Kalman filter is designed properly or not. If not,
the system model in (2.22) has to be changed to take the neglected dynamics
into account. The innovation process can also give information which can be
used to adjust the noise matrices Qd and Rd in the Kalman filter but this
approach will be left as possible future work (Hajiyev et al., 2015, page 67).
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Chapter 3

Navigation system design

We want to design a navigation system which is able to estimate the states of
a small fixed-wing UAV. We assume that the orientation of the aircraft or an
estimate thereof is given. The states we want to estimate are the position and
the speed of the aircraft along with the wind velocity. We also assume that we
are given a range of noisy sensor measurements in SI units. The sensors which
are assumed to be present is an accelerometer, a GPS outputting position and
velocity, a barometer and an airspeed sensor.

A dynamic model of the airplane, relating the control inputs (through forces and
torques) with the angular and linear acceleration, could be used in the design of
the navigation system. The navigation system would then be based on both the
kinetics and kinematics of the airplane. If designed properly, this could lead to
a very precise estimate of the system states due to the detailed system model.
However, such a model is not trivial to obtain and the model parameters would
have to be found for each airframe individually (Hajiyev et al., 2015, page 9-23).
Another approach is to just consider the kinematics of the system as in Farrell
(2008). This is the approach which will be used in this project and the design
methodology will be the ones from Farrell (2008, page 10 and 235-247) which
can be summarized as:

• Derive kinematic model of the system
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• Develop sensor models

• Augment system with sensor models

• Linearize and discretize system

• Design state estimator (Kalman filter)

• Analyse system performance

This chapter will go through the necessary steps in the design of the navigation
system and the above steps will be explained in the following sections. The
analysis of the system performance will be explained in Section 5.1 in the chapter
concerned with the results of this project.

3.1 Kinematic model of the system

The model for the system is a simple kinematic model relating the acceleration
with the velocity and position. The input to the system is the measured accel-
eration vector, u = a. The states are the velocity, position and wind velocity,
x =

[
P V W

]T . The continuous time system model is then:

ẋ = f(x,u,v1, t) =

 Ṗ

V̇

Ẇ

 =

Va
0

+

ePea
eW

 (3.1)

It can be seen that the wind is simply modelled as a random walk process.
All noise in the system is assumed to be white Gaussian noise. The system
measurements are:

y =


PGPS
VGPS

PD,baro
Vair

 (3.2)

The types of sensors providing the measurements are given in the subscripts.
There are a position and ground velocity measurement from a GPS, a barometer
measurement of the altitude and an airspeed measurement. In the following
section the sensor models will be developed and the system will be augmented
with the sensor models.
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3.2 Sensor models

Sensors will provide both the input to the system (high rate sensor) and the
outputs or measurements of the system (mix of high and low rate sensors).
Each of the sensor models will be explained in the following. The sensor models
are simplified theoretical models of sensors found in the literature. They are
therefore subject to a number of assumptions which means that these models
needs to be revisited and adjusted if the Kalman filter is to be implemented on
a specific hardware platform. For such an implementation the sensor data from
the implementation needs to be analysed and appropriate sensor models have
to be derived in case the initial assumptions does not hold.

3.2.1 Accelerometer

An accelerometer will be used to provide a high rate measurement used as input
to the system. The acceleration measurements comes from a sensor which is
rigidly attached to the platform. This is known as a strapdown system and the
sensor measurements are therefore in platform frame (or body frame if possible
misalignment is ignored). As the velocity and position is in the inertial frame,
we need to rotate the measured acceleration into the inertial frame. Recalling
that R found in (2.6) is the rotation matrix from body to inertial frame and
letting a leading subscript denote the reference frame, we can write:

Ia = RBa (3.3)

The acceleration in inertial frame has to be compensated for gravity which gives
the following equation:

Iacomp = RBa− g0 (3.4)

with g0 being the specific gravity which is g0 =
[
0 0 9.81

]T
m/s2. Measure-

ments from an accelerometer are never perfect and there are several errors that
can be modelled. Examples of these errors are biases (adding 3 states), scale
factors and misalignments (adding 9 states) and nonlinear effects (adding 18
states) (Farrell, 2008, page 408-410). In this project only the biases will be
considered. When this system is to be implemented on a hardware platform,
data from the accelerometer should be analysed in order to see if this simplifica-
tion is justified or if more accelerometer errors should be modelled. Modelling
the accelerometer biases and adding the measurement noise, the acceleration
measurement, ua, is:

ua = Ba− ba + RTg0 + ea (3.5)
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where a is the true acceleration in body frame, ba is the bias, g0 is the gravity
vector and ea ∈ Niid(0, σ2

a) is the measurement noise. This equation gives the
acceleration measured by the accelerometer in body frame. If this is rotated
into inertial frame we have:

Rua = Ia−Rba + g0 + Rea (3.6)

The compensated acceleration in inertial frame can now be isolated:

Ia = Rua + Rba − g0 + Rea (3.7)

This is the linear acceleration that can be integrated to get the velocity and
position.

3.2.2 GPS position and velocity

A GPS is used for measuring the position and velocity. Modelling the GPS
position errors is not a simple task. The reason for this is that most GPS
receivers filter the satellite measurements and produce an output which might be
correlated in time and where the noise on the axes might be correlated (Farrell,
2008, page 421). To realistically model the GPS errors a large number of factors
has to be taken into account (Farrell, 2008, page 280-302). However, a simpler
model of the errors can also be used where only the clock bias is considered as
in Hajiyev et al. (2015, page 44) or in Wada and Hashimoto (2004). Similar to
this the GPS measurement will in this project be modelled as a true position
and a bias. The model including the noise is:

yGPS = P− bGPS + eGPS (3.8)

where P is the true position, bGPS is the bias and eGPS ∈ Niid(0, σ
2
GPS) is

the measurement noise. The modelling of GPS velocity is equally complicated
as GPS position (Gaglione, 2015) (Serrano et al., 2004). The model that will
be used in this project is with an additive bias as for the GPS position. The
measurement model for the GPS velocity including noise is:

yV = V − bV + eV (3.9)

where V is the true velocity, bV is the bias and eV ∈ Niid(0, σ2
V ) is the mea-

surement noise.

3.2.3 Barometer

A barometer measures the pressure which can be converted to an altitude mea-
surement. A formula is given in Jan et al. (2008) which assumes knowledge of
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the temperature gradient as a function of altitude:

h =
T0
Tgrad

1−
(
p

p0

)(
TgradR

g0

) (3.10)

where h is barometric altitude, T0 is sea level temperature, Tgrad is the temper-
ature gradient, p is the pressure at altitude h, p0 is the pressure at sea level, R
is the gas constant and g0 is the gravity. This model may be necessary if the
platform is to perform at high altitudes as well as low altitudes. In Magnusson
(2013, page 38) this temperature gradient is modelled as an multiplicative con-
stant which is estimated in the Kalman filter. In Bosch (2015) the altitude is
calculated using the typical values for T0/Tgrad and TgradR/g0. In this project
we will assume that the barometric altitude is calculated fairly accurately and
the unmodelled factors will be modelled as an additive bias. The measurement
model is then:

ybaro = PD − bbaro + ebaro (3.11)

where PD is the true altitude, bbaro is the barometer bias and ebaro ∈ Niid(0, σ2
baro)

is the measurement noise.

3.2.4 Airspeed sensor

An airspeed sensor is usually realized as a differential pressure sensor. The
measurement is the pressure from a pitot tube pointing in the direction of travel
and a static pressure. By applying Bernoulli’s equation, these two pressures can
be used to calculate the flow velocity (NASA, 2015) (Microbridge, 2009):

v =

√
2(pt − ps)

ρ
(3.12)

where v is the velocity, ρ is the air density, pt is the total pressure measured
from the pitot tube and ps is the static pressure. In this project we will assume
that the airspeed is already converted and is given in m/s. The measurement
model for the airspeed sensor is:

yair = N ·RT (V + W) + eair (3.13)

where V is the ground speed, W is the wind velocity, N =
[
1 0 0

]
and

eair ∈ Niid(0, σ2
air). The cause for the N-matrix is that the measurement is only

in one dimension and that the velocity and wind velocity vectors that we are
measuring are in three dimensions. The noise free airspeed for the UAV would
be:

Vair = N ·RT (V + W) (3.14)
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The airspeed in three dimensions in inertial frame is:

IVair = V + W (3.15)

It can be seen from this that a wind coming from North is positive in the
North-coordinate. The wind vector W therefore gives the direction of travel
where there is headwind. The other sensors has so far been modelled with an
additive bias, but this will not be the case for the airspeed sensor. When an
airspeed bias state was included, the Kalman filter was not able to estimate the
sensor biases for the other measurements correctly. This led to a wrong state
estimate and a bad overall performance of the filter. To avoid this, the airspeed
measurement is therefore modelled without a bias.

3.3 Augmented system

The system will now be augmented with the sensor models found above. This
means that the bias states will be added to the state vector and the system
equations will be updated. The new states of the system are:

x =
[
PT VT WT bbaro bTGPS bTa bTV

]T (3.16)

where P, V, W, bGPS , ba and bV are vectors given by:

P =

PNPE
PD

V =

VNVE
VD

W =

WN

WE

WD


bGPS =

bGPSNbGPSE
bGPSD

ba =

baXbaY
baZ

bV =

bVNbVE
bVD

 (3.17)

We can see that the system has 19 states. The system function, f , in vector
form is now given by:

f(x(t),u(t),v1(t), t) =



V
Rba

0
...
0
...


+



0
Rua − g0

0
...
0
...


+



eP
Rea
eW
...

ebias
...


(3.18)

We can see that the first vector is the part of f that comes from the states, the
second vector is the part that comes from the input and the last vector is the
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process noise. The terms in the process noise vector are given by:

eP ∈ Niid(0, σ2
P )

eW ∈ Niid(0, σ2
W )

ebias ∈ Niid(0, σ2
bias)

(3.19)

The biases are modelled as integrated white noise which will give a random walk
process. The input to the system is given by:

u =

[
ua
g0

]
(3.20)

The reason for g0 being in the input is that the acceleration is corrected for
gravity inside the Kalman filter. If a gravity compensated acceleration is used
instead, this term would vanish from f and u.

The system measurements are given by:

y(t) = g(x(t),u(t), t) + v2(t) =


P− bGPS
V − bV
PD − bbaro

N ·RT (V + W)

+


eGPS
eV
ebaro
eair

 (3.21)

In the measurement equation we can recognize all the measurement models
found previously.

3.4 Discrete time linear system

The system function is now to be linearized and discretized. From the system
function in (3.18) we can see that the time variance in the system comes from
the rotation matrix R. The values in this matrix will change over time when
the Euler angles at a certain time instant is inserted. The linearization of the
system is done analytically and the system matrix A, B and C are obtained.
The coefficients in the matrices are functions of the orientation, which is a
function of time. The sizes of the matrices are 19× 19 for A, 19× 4 for B and
8× 19 for C. All matrices are shown in Appendix D.

For the purpose of this project, the assumption of A and u being constant
between samples is justifiable as the orientation of the UAV which gives rise to
the time variance of A and the acceleration which is the input are sampled at
the highest rate. The method for discretizing a time invariant matrix shown
in (2.14) is therefore the one that will be used. These equations are solved
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analytically resulting in time varying matrices F and G. The time variance in
these matrices are again from the time variance of the orientation. The sizes of
the matrices are 19× 19 for F(k), 19× 4 for G(k) and are shown in Appendix
D. At a certain time step, k, the constant matrices are found by inserting the
orientation at that time step. The Kalman filter design can now be carried out
using these matrices.

3.5 Kalman filter design

When the discrete time system model is found, the Kalman filter can be de-
signed. To ease the computational burden of running the Kalman filter, it will
be implemented as an iterated Kalman filter as described in Section 2.3.2. To
do this, it has to be assumed that the measurements are independent which
means that the measurement noise matrix Rd is diagonal. The Kalman filter
will receive sensor data at different rates from the GPS, airspeed sensor and
barometer. To accommodate this, the rows in C which corresponds to unavail-
able sensors at a time k will be set to zero, as described in Section 2.3.3. What
is left of the Kalman filter design after these choices is to make sure that the
system is observable and to find the noise matrices. This will be covered in the
following sections.

3.5.1 Observability

The observability is tested for the time varying symbolic matrices found above.
The observability is tested by symbolically finding the matrix CVR from (2.34).
This matrix is given as:

CVR =



1 0 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 CV84 CV85 CV86 0 0 0 0 0 0 0


(3.22)
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where CV84, CV85 and CV86 are given by:

CV84 =
cos (ψ) cos (θ)

cos (ψ)
2
cos (θ)

2
+ cos (ψ)

2
sin (θ)

2
+ cos (θ)

2
sin (ψ)

2
+ sin (ψ)

2
sin (θ)

2

CV85 =
cos (θ) sin (ψ)

cos (ψ)
2
cos (θ)

2
+ cos (ψ)

2
sin (θ)

2
+ cos (θ)

2
sin (ψ)

2
+ sin (ψ)

2
sin (θ)

2

CV86 = − sin (θ)

cos (θ)
2

+ sin (θ)
2

(3.23)

For the system to be observable, the matrixCVR can not have any zero columns.
The only variables the matrix depends on is the pitch θ and the heading ψ. We
can find the orientations at which the system is unobservable by setting (3.23)
equal to zero and solving for the angles. This is easily done as this is the
solution to the sine and cosine functions being equal to zero. The result is that
the system is unobservable under the following conditions:

ψ =

{
π
2 + πp ∀θ, p ∈ Z
πp ∀θ, p ∈ Z

θ =

{
π
2 + πp ∀ψ, p ∈ Z
πp ∀ψ, p ∈ Z

(3.24)

We can see that when the heading or pitch is 0, 90, 180 or 360 degrees, the
system will be unobservable. This test is also performed numerically for the
system which gives the same result. The result of the numerical test is shown in
Figure 3.1. From examining this plot we can see that the observability depends
on θ and ψ and that the system is unobservable at 0, ±π/2 and ±π which
corresponds with what was found analytically in (3.24). An observable subspace
decomposition could be carried out in order to find which states were observable
(Hendricks et al., 2008, page 157). However, due to an ill-conditioned system
matrix, this does not give consistent results in Matlab. An argumentation for
which states that will be unobservable can instead be given by examining the
measurement equations. The airspeed sensor only measures the airspeed in
one direction, which is the direction of flight. With only a kinematic model of
the airplane, the wind velocity is only observable through the airspeed sensor.
This can also be seen from the measurement equations in (3.21) where the
states W are only in the airspeed measurement equation. This means that the
components of the wind velocity which are perpendicular to the one airspeed
measurement will be unobservable. When revisiting the cases where the system
was unobservable, we see that they can all be explained by the unobservability
of the wind.

Most of the time, the system is working with no GPS input. This means that
the rows in C that corresponds to the GPS measurements are zero. In this case,
the system is not fully observable. The states which are observable through the
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Figure 3.1: Result of the numerical observability test for a number of positions.
Note that this is a 3D-plot. We can see that the observability
depends on θ and ψ, but not on φ

barometer and airspeed sensor are PD, bbaro, V and W but the states may be
indistinguishable from each other when there is no GPS measurement.

3.5.2 Noise matrices

The process noise covariance matrix for the Kalman filter was set to:

V1 = diag((σ2
P )×3 , (σ

2
a)×3 , (σ

2
W )×3 , (σ

2
bias)×10) (3.25)

Where σP = 0.1, σa = 0.3, σW = 0.1 and σbias = 0.005. The prefix below the
variances is used to indicate the number of times the term is repeated, thus the
process noise covariance matrix V1 is a 19× 19 matrix with the variances along
its diagonal.

The measurement noise covariance matrix was set to:

V2 = diag((σ2
GPS)×3 , (σ

2
V )×3 , σ

2
baro , σ

2
air) (3.26)

Where σGPS = 1, σV = 0.05, σbaro = 0.2 and σair = 0.2. Since there is eight
measurements the measurement noise covariance matrix V2 is an 8× 8 matrix.
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The sampling time used for the discretization of the process- and measurements
noise covariance matrices according to (2.20) was:

Ts = 0.02 s

TGPS = 1 s (3.27)
Tmeas = 0.02 s

Where Ts is the sample time for the process, thus the it is the sample time for
the time update step in the Kalman filter. The GPS is assumed to have a update
rate of only 1 Hz, thus the sample time of the GPS was set to TGPS = 1 s. Both
the barometer and airspeed sensor were assumed to have equal sample time at
Tmeas = 0.02 s.

To discretize the process noise matrix we use (2.20):

Qd(k) ≈ Bv(k)V1B
T
v (k)Ts (3.28)

where V1 is given by (3.25), Ts is given above and Bv is given as:

Bv =



1
1

1
R11 R12 R13

R21 R22 R23

R31 R32 R33

1
. . .


(3.29)

This matrix is a 19× 19 matrix with ones in the diagonal except for where the
rotation matrix R is. All empty space is zeros. The resulting Qd is given in
Appendix D.

The measurement noise matrix Rd is given by (2.21):

Rd ≈ V2T
−1 (3.30)

where
T = diag((TGPS)×6 , Tmeas , Tmeas) (3.31)

The matrix is given in Appendix D.
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Chapter 4

Guidance system

In this chapter, the guidance system for a UAV will be discussed. The guidance
system consists of a path planning algorithm, which is used to calculate the
path between two waypoint under some given constraints. Based on the current
position of the UAV the guidance system will then output set-points used by
the controllers in order to follow the planned path.

4.1 Dubins path

The Dubins path is named after the American mathematician Lester Dubins,
who published a paper back in 1957 (Dubins, 1957) showing that the shortest
path between two points with a constraint on the curvature and final tangents,
for a particle that can only travel forward, consist of circular arcs and straight
line segments. He showed that the shortest path only consists of three segments
of the type CCC or CSC where C denotes either a left or right circle arc segment
and S is a straight line segment. Thus the end segments will always be a circle
arc with either another circle arc or straight line in-between. This is very useful
for UAVs as it gives an optimal way of calculating the shortest path between
two waypoints given by their x,y-coordinates and heading angle ψ constrained
by the maximum turning radius ρ.
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In the paper by Shkel and Lumelsky (2001) the following three operators are
defined for each type of segment:

Lv(x, y, ψ) = (x+ sin(ψ + v)− sinψ, y − cos(ψ + v) + cosψ,ψ + v)

Rv(x, y, ψ) = (x− sin(ψ − v) + sinψ, y + cos(ψ − v)− cosψ,ψ − v)

Sv(x, y, ψ) = (x+ v cosψ, y + v sinψ,ψ)

(4.1)

where x and y are the x,y-coordinates, ψ is the heading of the vehicle and the
subscript v denotes the length of that particular segment. By introducing a
rectangular coordinate system with its origin in the initial point Pi and the
x-axis pointing in the direction of the final point Pf . The coordinates of these
two points can be simplified to Pi = (0, 0) and Pf = (d, 0). Furthermore the
angle of each point is α and β respectively.

If a left and right circular arc are denoted by L and R respectively and a straight
line is denoted S, the six possible combinations of segments are: LSL, LSR, RSR,
RSL, RLR and LRL. Thus by using the boundary conditions for the two points
the path LSR is given by Rq(Sp(Lt(0, 0, α))) = (d, 0, β). Where t, p and q
denotes the length of each segment. By solving these three equations for t, p
and q one can calculate the total length of the Dubins path in the x,y-plane:

L = t+ p+ q (4.2)

Thus the path length of all these six combinations can be determined by inserting
(4.1) into one another and solving for the boundary conditions. The shortest
path is then simply given by the minimum path length found. The derivations
of all six combination are shown in (Shkel and Lumelsky, 2001) and the results
are summarized in Appendix E. This approach is very useful, as it calculates the
length of each segment directly, which is beneficial when limited computation
time is available, as it will be on a UAV.

Note that the above results are only valid for a so-called long path case, which
is constrained by d >

√
4− (| cosα|+ | cosβ|)2 + | sinα| + | sinβ|, thus if this

condition is not fulfilled a sub-optimal solution is found using the equations
presented.

A UAV will be limited by the maximum allowed roll angle φmax. For a given
airspeed Vair the turning rate ω is given by:

ω =
g0
Vair

tanφmax (4.3)

The turning radius ρ is given by:

ρ =
Vair
ω

(4.4)
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By inserting (4.3) into (4.4):

ρ =
V 2
air

g0 tanφmax
(4.5)

Thus the turning radius ρ of a UAV is given by the airspeed Vair, the gravita-
tional constant g0 and the maximum roll angle φmax (Briod, 2008, Eq. (3.4-3.6)).

The results from (Shkel and Lumelsky, 2001) where implemented by Walker
(2008–) and was used as means of calculating the length and type of the shortest
path in C and Matlab. Figure 4.1 shows an example of a Dubins path for the
points P1 = (0, 0) with heading angle ψ1 = 0 and P2 = (10, 15) with heading
angle ψ2 = − π/4. The airspeed Vair was set to 5 m/s, the maximum roll angle
φmax was ±30° and the gravitational constant g0 was 9.81 m/s2. By inserting
into (4.5) the turning radius was calculated to be ρ = 4.4140 m, as it can be
seen the resulting shortest path between these point is a LSR path.
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Figure 4.1: Dubins path (LSR) for P1 = (0, 0) and P2 = (10, 15) with a head-
ing angle of ψ1 = 0 and ψ2 = − π/4 respectively. The turning
radius was set to ρ = 4.4140 m

4.2 Vector field guidance

In the work by Nelson et al. (2006) a solution for calculating a converging vector
fields for circles and straight lines are given. The direction of the vector fields
can be used as a desired heading angle, ψd, allowing the UAV to reach the
desired path asymptotically.
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4.2.1 Circular vector field

The algorithm for calculating the circular vector field when the UAV needs to
stay at a circular segment will be describe in the following section.

The distance from UAV to the center of the circle is given by:

d = ||z − c|| (4.6)

where z = (x, y)
T is the x,y-coordinates of the current location of the UAV and

c = (cx, cy)T is the x,y-coordinates of the origin of the circle.

The current angle of the UAV with relation to the origin of the circle is given
by:

γ = atan2(y − cy, x− cx) (4.7)

where atan2 is the four quadrant inverse tangent function.

If the distance from the center of the circle is larger than twice the radius of the
circle r i.e. d > 2r the angle of the vector is given by:

ψd = γ + dir
[
π − sin−1

( r
d

)]
(4.8)

where dir is the turning direction following the right-hand rule i.e. 1 when
turning counter-clockwise (CCW) and -1 when turning clockwise (CW).

If the distance is less or equal twice the radius of the circle the angle of the
vector is given by:

ψd = γ + dir

[
π

2
+
π

3

(
d− r
r

)k1]
, k1 >= 1 (4.9)

where k1 is the convergence gain and can be tuned by the user.

Figure 4.2 shows a vector field generated for a circle in the clockwise (CW) and
counter-clockwise (CCW) direction respectively. Where the dotted line indicates
the d > 2r region.

4.2.2 Line vector field

When the UAV needs to stay at a straight line connecting the two waypoints
w1 = (w1x , w1y ), w2 = (w2x , w2y ) a different algorithm is needed.
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(a) CW circular vector field
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(b) CCW circular vector field

Figure 4.2: Circular vector fields. The vector field is generated for the red
circle. Outside the dotted circle, the vector fields are calculated
according to (4.8) while they are calculated using (4.9) inside this
region

The heading between the two waypoints is given by:

ψf = atan2(w2y − w1y , w2x − w1x) (4.10)

The normalized distance along the path s ∈ [0, 1] needs to be calculated:

s =
(z − w1)T (w2 − w1)

||w2 − w1||2
(4.11)

The distance of the UAVs current location z = (x, y)
T from the path is given

by:

ε = ||z − [s (w2 − w1) + w1] || (4.12)

The sign of the cross product between the distance between the two waypoints
and the distance between the current location and the first waypoint indicates
which side of the straight line the UAV is currently on:

η = sign [(w2 − w1)× (z − w1)] (4.13)

The distance from the path is then redefined:

ε = ηε (4.14)
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If the absolute distance is greater than the transition region boundary distance
τ i.e. |ε| > τ the angle of the vector is given by:

ψd = ψf − ηψe; (4.15)

where ψe is the entry heading angle and can be tuned by the user.

On the other hand if the absolute distance is less or equal to the transition
region boundary distance |ε| <= τ the angle of the vector is given by:

ψd = ψf − ψe
( ε
τ

)k2
, k2 >= 1 (4.16)

where k2 is the transition gain. It should be noted that if s > 1, a waypoint has
been missed and action has to be taken by the underlying guidance algorithm,
this will be discussed more in section 4.6.2.

Figure 4.3 shows the result of plotting the vector field for a straight line. The
dotted line indicates the transition region boundary distance. An entry heading
angle of ψe = π/4 was chosen. Notice how the angle between the vector field and
transition region boundary distance is just equal to ±ψe outside the transition
region boundary distance according to (4.15), while the vector fields converges
inside this region.
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Figure 4.3: Line vector field. The red line is the straight line segment for which
the vector field is generated, while the dotted lines indicates the
transition region boundary distance

4.3 Sub-waypoint calculation

As the vector field calculation depends on the type of segment that the UAV
is on at a given time, it is important to be able to determine this. One way
of doing this is to introduce two sub-waypoints between the segments. Figure
4.4 shows an example of the two sub-waypoints found for the LSR Dubins path
that was shown in Figure 4.1.

The origin of the circle C1 is given by the following:

C1 = (w1x − dirρ sinw1ψ , w1y + dirρ cosw1ψ )

= (0− 4.4140 sin 0, 0 + 4.4140 cos 0)

= (0, 4.4140)

(4.17)

where w1x , w1y and w1ψ are the x,y-coordinates and heading angle of the first
waypoint. dir is the turning direction of the first segment, since it is a left turn,
the direction is positive according to the right-hand rule i.e. dir = 1.

The heading at the sub-waypoint wsub1 can now be calculated using the length



38 Guidance system

−4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

w1 = (0, 0)

w2 = (10, 15)

C1 = (0, 4.41)

C2 = (6.88, 11.88)

wsub1 = (4.2, 5.76)
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Figure 4.4: Example of sub-waypoint calculation for the Dubins path for w1 =
(0, 0), w1ψ = 0, w2 = (10, 15), w2ψ = − π/4 and ρ = 4.4140 m

of the first segment t obtained using (E.7) in Appendix E:

wsub1ψ = w1ψ + dir

(
t

ρ

)
mod 2π

= 0 +
8.3017

4.4140
mod 2π

= 1.8808 rad = 107.7620°

(4.18)

where mod is the modulo operator.

Now the x,y-coordinates of the sub-waypoint wsub1 can be determined:

wsub1x = C1x + dirρ sinwsub1ψ
= 0 + 4.4140 sin 107.7620° = 4.2036

(4.19)

wsub1y = C1y − dirρ coswsub1ψ
= 4.4140− 4.4140 cos 107.7620° = 5.7605

(4.20)

The origin of the circle C2 is calculated in a similar way, however the turning
direction of the third segment is a right turn, thus the turning direction is
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negative i.e. dir = −1:

C2 = (w2x − dirρ sinw2ψ , w2y + dirρ cosw2ψ )

= (10 + 4.4140 sin

(
−π
4

)
, 15− 4.4140 cos

(
−π
4

)
)

= (6.8788, 11.8788)

(4.21)

The heading of the second sub-waypoint wsub2 can be calculated using the length
of the third segment q. Again this is found using (E.7) in Appendix E:

wsub2ψ = w2ψ − dir

(
q

ρ

)
mod 2π

=
−π
4

+
11.7684

4.4140
mod 2π

= 1.8808 rad = 107.7620°

(4.22)

Notice how the sign has been swapped compared to (4.18) this is because the
sub-waypoint wsub2 is before the second waypoint w2 in the path. In this case
the heading of the two sub-waypoints are the same, this will always be the case
for a CSC path, as the two sub-waypoints will be connected by a tangent line
for the two circles C1 and C2.

The x,y-coordinates of the second sub-waypoint wsub2 can now be calculated:

wsub2x = C2x + dirρ sinwsub2ψ
= 6.8788− 4.4140 sin 107.7620° = 2.6752

(4.23)

wsub2y = C2y − dirρ coswsub2ψ
= 11.8788 + 4.4140 cos 107.7620° = 10.5323

(4.24)

4.4 2D guidance

If the length of the first and last segment and the type of Dubins path is known, it
is possible to calculate the two sub-waypoints and since the type of Dubins path
is known, the type of segment can easily be determined and the corresponding
vector field calculated.

Figure 4.5 shows a plot of two Dubins path between three waypoints. In the
example the convergence gain and the transition gain was set to k1 = 1 and
k2 = 1. The transition region boundary distance was set to τ = ρ and the entry
heading angle and was set to ψe = π/4.
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The sub-waypoints are first calculated and the vector field for the path is plotted
next to it. The type of segment is determined by assuming it starts at the first
segment. In this case it will plot a circular vector field until it gets within a
certain distance of the first sub-waypoint, the next sub-waypoint is then set
as the objective and a line vector field is calculated until it reaches the second
sub-waypoint. This is then repeated until it reaches the last waypoint on the
path.
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2D waypoint guidance using Dubins path & vector field

Figure 4.5: Example of two continuous LSR Dubins paths with circular and
straight line vector fields that converges asymptotically towards
the path

4.5 Dubins airplane

Inspired by the work in (Beard and McLain, 2013; Briod, 2008) the Dubins path
algorithm was extended for 3D applications, as the Dubins path described so far
is only for 2D, thus we need to extend it in the z-axis as well. To differentiate
the 2D and 3D Dubins path they are often called the Dubins car and Dubins
airplane respectively.

If the maximum allowed pitch angle of the UAV is denoted θmax and the Dubins
car path length Lcar is the one calculated in (4.2), then the UAV will be able
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to fly between the two waypoints if the following condition is satisfied:

|w2z − w1z | ≤ Lcar tan θmax (4.25)

If the condition is not satisfied the UAV will have to extend the Dubins car path
length Lcar in order to satisfy (4.25). One way of doing it is to gain altitude by
spiralling n number of times either down or up, thus increasing Lcar.

It is desired for the UAV to travel in the highest altitude for as long time as
possible in order to avoid any collisions and ground turbulence, thus if the first
waypoint is located below the second waypoint i.e. w1z < w2z helices should
be generated in the beginning of the first segment. On the other hand if it is
located above w1z > w2z the first two first segments should first be flown and
then the UAV should helix down.

The number of helices that should be performed is given by:

n =

⌈
(2πρ)

−1 |w2z − w1z |
tan θmax

− Lcar
⌉

(4.26)

where the brackets d e is the ceil function which rounds the value up to the
nearest integer, thus satisfying (4.2). Note that because of the rounding, we will
end up in a higher altitude than in the optimal solution however this suboptimal
solutions simplifies the implementation a lot, as the x,y-coordinates of the sub-
waypoint does not change.

If the helices are done in the beginning of the path, the length of the first
segment, t, will be increased by the following relationship:

t = t+ 2πρn (4.27)

Similarly, when the UAV helixes down, the length of the last segment, q, will
be increased accordingly:

q = q + 2πρn (4.28)

Now the z-coordinate of the two sub-waypoints can be calculated assuming the
altitude change is just a linear function:

wsub1z = (w2z − w1z )
t

Lcar
+ w1z (4.29)

wsub2z = (w2z − w1z )
t+ p

Lcar
+ w1z (4.30)

Note that Lcar has to be recalculated in this case according to (4.2).
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Assuming the pitch angle is constant throughout the entire path the angle can
be calculated:

θ = atan2(w2z − w1z , Lcar) (4.31)

The total length of the Dubins airplane path is then given by:

Lair =
Lcar
cos θ

(4.32)

4.5.1 Determination of desired altitude

Given a straight line segment S between the two waypoints, w1 and w2, and the
current position of the UAV, (x, y, z)

T , a vector a between the two waypoints
is given by:

a = w2 − w1 (4.33)

A vector, b, between the current position and the first waypoint is given by:

b = (x, y, z)
T − w1 (4.34)

The projection of b onto a is then given by (Department of Mathematics, Oregon
State University, 1996):

projab =
a · b
|a|2

a =
a · b
a · a

a (4.35)

where · denotes the dot product.

By adding the projected vector, projab, to the first waypoint, w1, one can obtain
the x,y,z-coordinates of the closest intersection between the two vectors:

inter = w1 + projab (4.36)

The z-component of the closest intersection can be used as the desired z-position,
zd, for the UAV when travelling on a straight line segment, S. On the other hand,
when the UAV is located on a circular segment, C, the desired z-position zd is
simply set to the z-coordinate of the waypoint in the end of the current segment.
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4.6 3D guidance

Figure 4.6 shows a plot of a Dubins airplane path. The vector fields are plotted
next to it in the x,y-plane. A UAV could follow the path shown by calculating
the angle of the vector at its current location and using that angle as the desired
heading. The desired z-position, zd, could be calculated, as described above and
could be used as the set-point for the altitude controller.
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Figure 4.6: Example of six continuous Dubins airplane paths. The vector fields
are plotted in the x,y-plane next to the path

4.6.1 Waypoint switching

Initially, the UAV will be at the first waypoint, w1, and flying along a circular
segment C. The UAV reaches the next waypoint, wsub1, when it is within a
certain distance, wmin_dist, of it:

||wsub1 − (x, y, z)
T || < wmin_dist (4.37)

The guidance algorithm then automatically determines the type of the next
segment and the corresponding vector field. This is repeated until the last
waypoint, w2, is reached. If there are more paths in the queue, the last waypoint
will be set as the initial waypoint and the procedure is repeated until the final
waypoint is reached. Once that is done, the UAV will simply circle around that
waypoint until a new waypoint is given.
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4.6.2 Missed waypoint considerations

Due to the possibility of the UAV working in conditions where external factors
can affect it, a strategy needs to be considered in case a waypoint is missed. In
the case of a circle arc segment, C, nothing special has to be done, as the UAV
will simply follow the circular vector field in the x,y-plane and use the desired
altitude as the set-point in the z-axis. This will make the UAV circle around
until the waypoint is within a certain distance according to (4.37). However, if
the UAV is travelling along a straight line segment, S, the underlying guidance
algorithm has to detect if the UAV has travelled too far and make the UAV
turn around. An easy way of determining when it has travelled to far is to
check whenever s > 1 in (4.11). If this is the case, action has to be taken by the
guidance system. In our implementation, the guidance algorithm simply creates
a circular vector field around the missed waypoint until it is reached.

Figure 4.7 shows the results when a waypoint is missed. In this case the second
sub-waypoint in the first path is missed and the UAV automatically follows a
helix path in order to reach the waypoint.
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Figure 4.7: Example of the strategy when missing a waypoint on a straight line
segment. The UAV will simply start to helix around the missed
waypoint until it is reached

The Dubins airplane algoithm developed in this chapter could be expanded to
perform a Dubins path in the vertical plane and to use vector field guidance
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similar to in the x,y-plane instead of a simple altitude set-point, but since the
UAV is assumed to not change its altitude a lot, it has not been implemented.
Furthermore, a strategy for autonomous start and landing has not be considered.
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Chapter 5

Results & discussion

In this chapter, the results from the simulation of the entire system will first be
evaluated and then future improvements will be discussed.

5.1 Simulation results

In order to simulate our system, the 19-state Kalman filter described in chapter
3 was implemented in Matlab. The Dubins airplane and vector field guidance
system discussed in chapter 4 was implemented in Matlab as well.

Furthermore, since the customer for the project wants to use the implementa-
tions on an embedded device later on, the Kalman filter was implemented in
C++, this is describe in more detail in Appendix G. Similarly the Dubins airplane
guidance system was implemented in C.

Simulink was used as the simulation environment and the AeroSim Blockset1
was used to simulate the aircraft dynamics of an Aerosonde UAV2. The AeroSim

1http://www.u-dynamics.com/aerosim/default.htm
2http://www.aerosonde.com

http://www.u-dynamics.com/aerosim/default.htm
http://www.aerosonde.com
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Blockset also includes realistic environment models such as standard atmo-
sphere, background wind, turbulence and Earth Models such as geoid refer-
ence, gravity and magnetic field models. Throughout the simulations, a NED-
coordinate system is used. An overview of the Simulink model is shown in
Appendix H.

We closed the loop in the model using controllers for the elevator, aileron and
throttle inputs. The controllers are manually tuned PID-controllers and are
described in more detail in Appendix F. We decided not to use the rudder
control surface, as the customer wants to later implement the system on a flying
wing.

The Kalman filter was used as an observer for the closed loop, thus providing
an estimate of the position, ground velocity, wind speed, barometer bias, GPS
biases, accelerometer biases and ground velocity biases, as presented in (3.16).
The attitude was assumed to be known and is provided by the model. In a real
system, the attitude would be estimated by another algorithm. This estimate
would most likely not be perfect and to model this, white noise with a variance
of 0.12 were added on top of the attitudes given by the Simulink model. The
guidance system is used to give set-points for the desired heading, ψd, and
desired z-position, zd, based on the current position estimates.

In the case of the simulation, the variances of the different process and mea-
surements are all known, thus the Kalman filter should be able to estimate the
different states with high precision. However in a real scenario these would not
be known and the measurement data would have to be analysed in order to
estimate the variances.

5.1.1 Wind-free simulation

Figure 5.1 shows a plot of the simulation results for simulated flight between
the three waypoints:

w1xyzψ = (0, 0,−300, 0)

w2xyzψ = (1000, 500,−700, 0) (5.1)
w3xyzψ = (1000,−500,−570, π)

with a wind speed set to 0 in all three directions. The desired airspeed, Vaird ,
was set to 25 m/s, the maximum roll angle, φmax, was limited to ±40° and the
gravitational constant g0 was set to 9.81 m/s2. By inserting into (4.5) this gives
a turning radius of ρ = 75.9272. Furthermore a threshold distance for the
waypoint was set to wmin_dist = 30.
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Figure 5.1: Simulation results for no wind conditions

As it can be seen on Figure 5.1, the UAV can successfully fly along the planned
path. However, some oscillations can be seen in the x,y-plane. This is most
likely due to the controllers not being perfectly tuned as this was not the main
focus in this project. Also note how the number of helices is automatically
determined in both ends.

5.1.1.1 Airspeed and wind estimates

Figure 5.2a shows the estimated airspeed and airspeed estimation error vs. time.
As it can be seen it can successfully estimate the airspeed with an error of
approximately −0.2 m/s to 0.4 m/s. It is noticed that the airspeed varies quite a
bit from the set-point of 25 m/s. The undershoot is caused when the Aerosonde is
pitching upward, thus decreasing its speed to approximately 20 m/s even though
the throttle stays at 100 % in the simulation, thus we might have to use a lower
climb angle if we want to stay closer to the desired airspeed Vaird . Similarly
the airspeed increases to approximately 32 m/s when the UAV is doing the final
downward helix even though the throttle stays at 0 %. In some cases this could
make the UAV miss the waypoints. One way of solving this would be to limit the
capabilities of the pitching angle, as described earlier, another approach would
be to recalculate the the Dubins path for the new airspeed periodically or if the
difference between the desired airspeed and the estimated airspeed was larger
than a certain value. The most appealing of these solution would be the former
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as this would keep the airplane closest to the desired airspeed set-point.

Figure 5.2b shows a plot of the estimated wind speed vs. time. This shows that
the UAV can successfully estimate the wind in the north and east direction.
However, the estimate of the wind speed in the down direction is not as close
to 0 as the other estimates. The reason is that the Kalman filter has no way of
estimating the wind speed in the down direction unless the UAV pitches up and
down, as the pitot tube is facing forward along the x-axis in the body frame.
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Figure 5.2: To the left is estimated airspeed and airspeed error and to the
right is estimated wind speed vs. time

5.1.1.2 Bias estimates

Figure 5.3 shows all the bias estimates as a functions of time. In the current
simulation all biases were set to 0. As it can be seen, all biases converge. How-
ever, none of the bias estimates for the barometer or for the GPS are converging
to the true values.

Another thing to notice is that the barometer bias and the bias for the GPS
in the downward direction looks to be correlated. The correlation coefficient
between the two signals is -0.7898, thus they show sign of inverse correlation.
This might indicate that the two states are indistinguishable from one another
as an increase in one bias is causing a decrease in the other.

The velocity and accelerometer biases all converge to the true value rather
quickly, however it seems unlikely that the biases for the velocity and accelerom-
eter would be so well estimated in a real scenario. For instance the biases of the
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accelerometer could be time and/or temperature dependent which would cause
the biases to drift. However, since the sensor is modelled exactly as described
in section 3.2.1 it is obvious that the biases will converge to the right values.
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Figure 5.3: Estimation of biases for the various sensors vs. time

5.1.1.3 State errors

Figure 5.4a shows a plot of the difference between the estimated position and
the true position. It can be seen that the navigation system can estimate the
position with an error of approximately ±1.5 m. The difference between the
estimated ground velocity and true ground velocity is plotted in Figure 5.4b,
thus it was able to determine the ground velocity with an error at roughly
±0.4 m/s. The difference between the estimated position and the route planned
by the Dubins path can be seen in Figure 5.4c. It is calculated as the 2-norm of
the current location to the closest point on the planned path. From the figure it
can be seen that the UAV can follow the planned path with no more than 37 m
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error in the x,y,z-space. The oscillations when flying on a straight line which are
also present in Figure 5.1 can be seen here as well. The high peaks in the end
of the graph is caused by the overshoot in the last helix caused by the increased
airspeed, as shown in Figure 5.2a. It is worth noticing that even though the
distance to the path might seem large at times, it is most of the time less than
the distance that could be covered by the UAV in 1-2 seconds.
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Figure 5.4: (a) and (b) shows the difference between estimated position and
ground velocity and their true values. (c) shows the difference
between the estimated position of the UAV and planned Dubins
path
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5.1.1.4 Innovation processes

Figure 5.5 shows the autocorrelation of the innovation process. The green lines
in each plot represent the 99 % confidential intervals. The whiteness of the
innovation process is an important mean of telling if the Kalman filter is designed
properly, as the innovation process should be white noise, as described in section
2.3.4.2.
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Figure 5.5: The plots show the autocorrelation for the innovation process. On
(a) it is shown for the position, on (b) for the velocity and on (c)
for the barometer and airspeed sensor. The green lines in all plots
are the 99 % confidence intervals

As it can be seen, the innovation process for the position shown in Figure 5.5a
looks to be white with only the peaks at roughly τ = ±22 crossing the 99
% confidential interval. As the plot shows 100 values of the autocorelation
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function, we are expecting one point to be outside the confidence interval on
a 99 % level. Figure 5.5b shows the innovation process for the velocity. In
this plot there is 1 ponit outside for VN , 2 points for VE and 3 points for VD.
This is a bit more problematic as there are too many points outside for two of
the innovation processes. It is also problematic for VN where there is only one
point outside as this point is the one that correponds to a lag of one. This can
be a sign that the model order is too low. However, finding the cause for this
and correcting the Kalman filter model is left as future work. The innovation
process for the barometer and airspeed sensors is shown on Figure 5.5c. These
plots look as expected as there are no peaks outside the confidential interval for
the barometer and only one outside for the airspeed sensor.

5.1.1.5 State estimate variances

Figure 5.6 shows a plot of the variances for all the state estimates. Notice how it
takes a little while for the Kalman filter to converge, thus the error is larger when
the UAV is first started. In a real application this could be solved by having the
UAV sitting on the ground for a little while until the variances have stabilized.
The high frequency sawtooth shape displayed by the position variances is due
to the variance increasing when there is no GPS input and falling as soon as
there is a GPS measurement. The low frequency sawtooth shape of the variance
of the wind estimates is caused by the bad observability conditions when flying
in a straight line, as explained in section 3.5.1. The variances of the wind speed
estimate in the downward direction WD increases noticeable doing the interval
70 s - 130 s and again at 140 s - 170 s. This is caused by the fact that the UAV
is flying straight during those intervals, as it can be seen from Figure 5.7. It
can also seen that the variance of the wind speed in the eastern direction WE

rises more than the northern WN during the interval 70 s - 130 s, as the UAV
is flying almost north. The opposite is the case during the interval 140 s - 170 s
when the UAV is flying in a more eastern direction.

As the wind estimates generally raises when going in a straight line and con-
verges when doing helices while pitching either up and down. One could imagine
a strategy where the UAV would automatically do those manoeuvres if the vari-
ances rose above a certain threshold. Since the wind estimates are especially
important for autonomous landing it would probably be a good idea for the UAV
to helix around the landing site at least once before approaching the runway in
order to have a good estimate of the wind velocity.

Figure 5.7 shows the heading of the UAV as a function of time. The figure
shows that there are oscillations on the heading when the airplane is flying
the straight line segments. This is due to the controllers not being perfectly
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Figure 5.6: Variances of the state estimates

tuned as described earlier. When comparing this figure to the variances of the
wind estimate shown in Figure 5.6 it is instantly visible that the variance of the
estimate decreases when the UAV is turning but increases when it is flying in a
straight line.
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Figure 5.7: UAV heading as a function of time

5.1.2 Wind simulation

Another simulation was performed with the mean wind components set to the
following:

W =

6
2
0

m/s (5.2)
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The rest of the settings were the same as the ones used previously. This section
will explain the results that differ from those of the wind free simulation.

Figure 5.8 shows the resulting flightpath, and it can be seen that it is very
similar to the flightpath in the wind free simulation . However, the last straight
line path is clearly shifted due to the northern wind component, WN . This is
also noticeable on Figure 5.9a, which shows the distance of the UAV current
position to the planned path. Comparing this to 5.4c it can be seen that the
error is larger in windy conditions.
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Figure 5.8: Simulation results for wind conditions

Figure 5.9b shows a plot of the estimated wind speed. It can be seen that the
Kalman filter successfully converges at the true values for WN and WE after
roughly 10 s. The downward wind speed components WD does not converge
exactly at 0. This could be caused by the fact that the UAV does not pitch
much up and down during the flight so that this component is only weakly
observable. Another possible reason is that the state converges to a wrong
value due to the angle of attack of the airplane. Comparing the wind estimates
to the heading of the airplane which is shown on Figure 5.10a, we see that the
estimates for WN and WD has converged when the airplane has completed half
a helix. This shows that the wind can be estimated relatively fast and even
without doing a full helix.

The variances for the estimates states excluding the bias states can be seen
in Figure 5.10b. By comparing the variances to the ones for the wind-free
simulation in Figure 5.6 it noticeable that the variances are a bit larger for the
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Figure 5.9

simulation with wind. When looking at the variance for the wind speed we can
see that it is at its lowest when it has completed a full helix.

It is important to estimate the wind, especially if autonomous takeoff and land-
ing has to be implemented in the future. It is important for the UAV to takeoff
and land against the wind as this will slow its ground speed down if it is flying
with constant airspeed. The airspeed is calculated using the wind speed esti-
mate, as seen in (3.14). A wrong estimated airspeed could therefore make the
UAV fly too slow and potentially below its stall speed, which in the worst case
scenario would stall and crash the UAV.

Furthermore, the wind estimate could be used for a more advanced planning al-
gorithm that could use the estimated airspeed when estimating the optimal path.
It could also be used by the vector field generation to increase the transition
gain, k2, for the straight line vector field. This could improve the performance
when there is a side-wind, thus decreasing the offset shown in Figure 5.8.
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Figure 5.10

5.1.3 Wind simulation with biases

In this simulation, the following biases were added to the sensors:

bbaro = −1.3 m

bGPS =

−1.0
1.1
−1.2

m

bV =

 0.4
−0.5
0.6

m/s (5.3)

ba =

 0.1
−0.15

0.2

m/s2

The values of the biases were chosen so as to be realistic, to be of the same
magnitude on all three components on a sensor and to be distinguishable from
each other. The wind components were set to the same as the ones in (5.2).
This section will cover the results that differ from the previous simulations.

Figure 5.11 shows the result of the simulated flight and it can be seen that there
is no noticeable differences compared to the simulation with wind and no biases
shown in Figure 5.8.

Figure 5.12 shows the estimated biases vs. time. It can be seen that all the
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Figure 5.11: Simulation results with both wind and biases

velocity and accelerometer biases are successfully estimated after approximately
10 s. However, the barometer does not converge exactly to the true value of
−1.3 m. Worse is the offset in the northern and eastern GPS biases, which was
also present in the simulation without wind, as shown in Figure 5.3. Similarly
to this simulation it also looks like bbaro and bGPSD are inverse correlated. In
this simulation the correlation coefficient between the two signal was calculated
to be -0.6841.
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Figure 5.12: Estimation of biases for the various sensors vs. time

5.1.4 Wind simulation with GPS dropout

In this simulation all biases where set back to 0, however this time a GPS
dropout was simulated at the interval 80 s - 110 s. This means that no position
or velocity measurements were available from the GPS during this interval.

The simulation result is shown on Figure 5.13. The GPS dropout can be seen
as the missing dots during the beginning of the first straight line segment. As
shown, the UAV can successfully navigate during this interval but with larger
position and velocity errors, as seen in Figure 5.14 on 5.14a and 5.14b. The
GPS dropout interval is shown with vertical lines. Small oscillations are also
visible in the planned position error during the dropout interval, as shown in
Figure 5.14c. It can be seen on 5.14d that the wind estimate is updated very
little during the GPS dropout. This is due to the lack of observability of the
wind states.
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Figure 5.13: Simulation results with GPS dropout. The lack of dotted lines
in the GPS position indicates the interval for the GPS dropout

Figure 5.15 shows the variances for the position and velocity estimates. The
variances increase during the GPS dropout interval. However, the downward
estimate does not rise as much, because of the barometer. This is also the reason
for the small error in the downward position and velocity estimate shown in
Figure 5.14.

One aspect that might need to be added in the future is resetting of the covari-
ances matrix in the case of a GPS dropout, as the variance will quickly rise,
which will cause a delay before the variance drops back to its original value. In
this case, the response is very quick, however it might lead to numerical issues if
some of the elements in the covariance matrix grow too large, thus the variances
might needed to be limited to a certain value.

Figure 5.16 shows a plot of the variances for the wind speed and bias state
estimates. It can be seen that the variance of the wind speed estimate rises
due to the lack of GPS velocity measurements in (3.13). The variances of the
bias states have all converged to an constant during the GPS dropout. Looking
at 5.17 it is clear that the bias estimates for the barometer, GPS position and
velocity all stay constant during the interval, thus it looks like the GPS dropout
makes them unobservable.

Overall, the simulation results for the GPS dropout looks rather good, however
it requires very good acceleration estimates, which will probably look worse
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Figure 5.14: Position error, velocity error, planned position error and esti-
mated wind speed. The GPS dropout interval is indicated by
the vertical lines

in a real scenario. Furthermore, the results might look worse if the UAV was
doing helices during the GPS dropout. In a realistic application, the GPS
measurements are critical and the autopilot would probably need to take action
in order to prevent the UAV from crashing. One approach would be to start
making large helices when a GPS dropout was detected and then simply wait
for a GPS fix. If that failed, a last resort would to be deploy a parachute or
similar in order to bring the UAV safely down.

One other option would be to redesign the Kalman filter such that it would
estimate the ground velocity based on only the airspeed sensor. The wind speed
components would then not be updated at all during the GPS dropout such
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Figure 5.15: Variances of the position and velocity estimates. The GPS
dropout interval is indicated by the vertical lines

that the values remained at the last estimated value. Making sure that only the
velocity were updated would solve the potential problem of the wind estimate
becoming indistinguishable from the accelerometer biases. This could provide a
good estimate of the velocity which would give an estimate of the position that
could be acceptable for a short period of time until a GPS fix was reestablished.
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Figure 5.16: Variances of the wind speed and bias state estimates. The GPS
dropout interval is indicated by the vertical lines
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dropout interval is indicated by the vertical lines. Note that the
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5.2 Discussion

In general, the simulation results were as expected but there was a number of
issues that were mentioned. These will be discussed in the following.

5.2.1 Navigation system

As described in section 5.1, the Kalman filter estimates did not converge to
the true values for the biases of the barometer and GPS position. At the time
of writing the reason is still unknown. It is worth mentioning, that starting
the simulation with different initial conditions would result in different errors
for bGPSN and bGPSE . The simulation was initialised with the plane flying e.g.
east instead of north but with the initial condition of the Kalman filter set to the
true value. The bias estimates, bGPSN and bGPSE , would in this case converge
on another set of values. This could be a sign that these bias errors are due to
a problem in the simulation. It was also seen that the barometer bias, bbaro,
and downward position bias, bGPSD , were inverse correlated. This might be a
sign that they are indistinguishable from the Kalman filters point of view. To
solve this, the bias for the GPS down position could be modelled differently or
removed.

5.2.2 Guidance system

The problems that were present for the guidance system in the simulations
in Section 5.1 were an offset from the planned path when subject to wind and
problems with following the path when descending due to an increased airspeed.
Currently the Dubins path is only calculated before the actual flight and if the
airspeed is not kept constant, the minimum turning radius of the UAV would
change according to (4.5). When ascending, the airspeed would increase even
though the throttle was at 0 %. One way of solving this problem would be
to recalculate the Dubins path periodically or if the error in airspeed was too
large. It could also be solved by making the Dubins path algorithm even more
conservative so that the manoeuvres of the UAV would be gentle enough to let
the airspeed controller keep the airspeed closer to the set-point.

An error in position from the planned path was seen when the UAV was subject
to wind from the side. If one imagines that the desired heading set by the vector
field at a certain distance from the path is exactly the heading that is needed
to counter the side wind it becomes apparent that the UAV will not reach the
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desired path. This problem could be solved by changing the transition gain, k2,
in the vector field guidance algorithm. However, to get good results from doing
this, the transition gain might have to be changed dynamically and a strategy
for this will have to be developed.

5.2.3 Future improvements

Overall we are content with the final results, as we were able to successfully
create an autopilot for a UAV in a simulated environment. Before the system
is ready to perform in a real environment, tests need to be performed on data
from a real flight. In the following a number of improvements to the systems
will be discussed.

5.2.3.1 Navigation system

A number of improvements are possible for the Kalman filter. One thing that
could be done is to improve the sensor models. Tests on real data would be
needed to see if this was necessary. Some ways the models could be improved
would be by including a scaling factor on the accelerometer or by modelling the
airspeed sensor with a scaling factor or a bias. When the sensor models are
realistic, tuning of the measurement noise covariance matrix, Rd, and process
noise covariance matrix, Qd, would be needed. Two approaches could be to use
innovation-based or residual-based adaptive estimation, as described in (Hajiyev
et al., 2015, page 67-68). In this project, the process noise for all biases was
set to the same intensity. The process noise is making up for the unmodelled
parts of the processes. It would therefore make sense for the process noise to
have different magnitudes for the different sensors. The system could also be
expanded with a filter to estimate the orientation of the UAV. All these additions
would need an extended Kalman filter (EKF), as the system will become non-
linear.

Another improvement would be to expand the filter to use quaternions instead
of Euler angles. This could be done relatively easy as the rotation matrix could
be expressed by quaternions instead of Euler angles.
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5.2.3.2 Numerical issues

The main numerical issues are concerning the symmetry and positive definite-
ness of the covariance matrix, Q(k). The issues with symmetry are easy to cor-
rect as the matrix can be resymmetrized as (Farrell, 2008, page 196) (Gustafsson,
2012, page 181):

Q =
1

2
(Q + QT ) (5.4)

The covariance matrix is by definition positive semi-definite (Farrell, 2008, page
197). It is therefore problematic if the covariance matrix loses its positive semi-
definiteness during the calculations. If this happens, a solution is to factorize Q
as:

Q = UDUT (5.5)

Another algorithm, known as a square root implementation of the Kalman filter
is then necessary (Farrell, 2008, page 197). Alternatively, the above factoriza-
tion of Q can be done at each iteration and negative singular values in D can
be replaced with zero or small positive numbers (Gustafsson, 2012, page 181).
Finally the Joseph form of the Kalman filter measurement update could be
performed, as it is always symmetric (Farrell, 2008, page 187).

However, these problems are normally due to a lack of precision in the im-
plementation (Farrell, 2008, page 196). In this project, the Kalman filter was
implemented with floating point arithmetic. This gives a high precision and the
above issues were not present for the short time the simulation was running.
However, if the system is to operate for long durations of time, these issues
would have to be addressed

5.2.3.3 Guidance system

The main improvement that could be done for the guidance system would be
to extend the Dubins airplane algorithm, so it would use a Dubins path in
the vertical plane as well, as the current approach is just to use a linear path.
Furthermore, it would be desirable to calculate the corresponding vector fields
along the z-axis instead of just using a set-point.

A future extension would be to implement an algorithm that would have con-
strains on the time and speed as well, thus it could reach a waypoint at a
particular time and speed. The guidance system would then be realised by
trajectory tracking instead of path following.
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Chapter 6

Conclusion

This report covered the theory and implementation of the navigation and guid-
ance system for an autopilot for a small fixed-wind unmanned aircraft. The
navigation system consisted of a 19 state time-variant Kalman filter that was
able to estimate the position, velocity, wind speed and various sensor biases of
a UAV in a simulated environment. All states could be estimated successfully
except the bias of the barometer and the three biases for the GPS position, as
they did not converge to the true values. The reasons for this were discussed
and will need further investigation. However, these issues did not seem to have
a noticeable effect on the estimates of the states. The guidance system was
implemented as a Dubins path with vector fields that generated the setpoints
for the low level controllers in order to make the UAV follow the desired path.
Simulations of the full system showed that the combination of the navigation
and guidance systems were able to make the UAV fly between several waypoints
autonomously even during a 30 s GPS dropout.
The purpose of the project was therefore fulfilled by the implementation of the
navigation and guidance system in simulation.
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Appendix A

Project plan

Figure A.1 shows the project plan for the assignment.
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Appendix B

Project requirements

Figure B.1 shows the project requirements that was agreed upon with Danish
Aviation Systems (DAS).
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Figure B.1



Appendix C

Stochastic processes

A random variable is a variable which take values after no particular pattern. It
can be described by a probability density function which specifies the probability
of the variable taking certain values. The expected value or the mean of a
random variable, X, is the integral or sum of all values a random value can
take weighted by the probability of the variable taking this value. For a discrete
random variable this is:

E{X} =

N∑
i=1

xipi (C.1)

where pi is the probability of the random variable taking the value xi. The
variance of a random variable is given by:

σ2 =

N∑
i=1

pi (xi − E{X})2 (C.2)

The square root of the variance is called the standard deviation (Hendricks et al.,
2008, page 357-361).
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C.1 The Normal distribution

A common distribution for a random variable is a Gaussian or normal distribu-
tion. This distribution is given by the probability density function:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (C.3)

where µ is the mean and σ is the standard deviation (Farrell, 2008, page 112)
(Hendricks et al., 2008, page 360). The Gaussian distribution is particularly
useful due to a theorem known as the central limit theorem. It states that
the distribution of a sum of n independent random variables will approach a
Gaussian distribution as n approaches infinity. This result is independent of the
individual distributions of the random variables in the sum. When a random
variable is a sum of many random effects, which is the case in many applications,
the distribution will be approximately normal making the normal distribution
particularly useful (Farrell, 2008, page 117) (Hendricks et al., 2008, page 369).

C.2 Correlation and covariance

The notion of random variables can be extended to vectors of random variables.
An assumption for such a vector that is frequently in this project is that the
random variables in the vector are independent and identically distributed (iid).
For vectors of random variables which are not independent the dependence can
be quantified through the covariance and the correlation (Farrell, 2008, page
117). The covariance is given by:

cov(v,w) = E{(v − µv)(w − µw)T } (C.4)

where v and w are vectors of random variables. The correlation is given by:

corr(v,w) = E{vwT } (C.5)

C.3 Autocorrelation

Random or stochastic processes can be seen as a random variable indexed by
the time parameter (Farrell, 2008, page 121). The covariance and correlation
is also defined for a random process and so is the autocorrelation where the
correlation of the function is taken with itself at different times:

Rv(t1, t2) = corr(v(t1),v(t2)) = E{v(t1)v(t2)T } (C.6)
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There are a couple of properties which are useful for stochastic processes. A
process is called stationary if the distribution is independent of time and wide
sense stationary if the mean and variance of the process is independent of time.
A process is called ergodic if the mean of the process over a certain time is equal
to the mean at a specific time of different ensembles of the process (Farrell, 2008,
page 122-123) (Hendricks et al., 2008, page 378-382).

C.4 White noise

The power spectral density (PSD) of a wide sense stationary random process is
the Fourier transform of the autocorrelation function (Farrell, 2008, page 122):

Sv(jω) =

∫ ∞
−∞

Rv(τ)e−jωτdτ (C.7)

where Rv(τ) = corr(v(t1),v(t2)), ω is the frequency and j is the imaginary
unit. Noise, which is a random process, is usually characterised by the frequency
contents. Noise which has a flat PSD and therefore the same amount of power
at all frequencies is called white noise, while noise where this is not the case is
called coloured noise (Farrell, 2008, page 123) (Hendricks et al., 2008, page 400).
When considering noise on sensors of which the output is integrated, another
important term is a random walk which is integrated white noise. This is also
called Brownian motion (Farrell, 2008, page 134).
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Appendix D

System matrices

In this chapter the following short forms will be used:

cos(x) ≡ cx

sin(x) ≡ sx
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D.1 Linear continuous time system matrices

A
=

                                 0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

cψ
cθ

cψ
sφ

sθ
−

cφ
sψ

sφ
sψ

+
cφ

cψ
sθ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

cθ
sψ

cφ
cψ

+
sφ

sψ
sθ

cφ
sψ

sθ
−

cψ
sφ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
−

sθ
cθ

sφ
cφ

cθ
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

                                 

(D
.1
)
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B =



0 0 0 0
0 0 0 0
0 0 0 0

cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ 0
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ 0
−sθ cθsφ cφcθ −1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(D.2)
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Given here is:
ac = cψcθ

bc = cθsψ

cc = − sθ

cθ2 + sθ2

dc = cψ2cθ2 + cψ2sθ2 + cθ2sψ2 + sψ2sθ2

C
=

           1
0

0
0

0
0

0
0

0
0
−

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0
−

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0
−

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
−

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0
−

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0
−

1
0

0
1

0
0

0
0

0
0
−

1
0

0
0

0
0

0
0

0
0

0
0

0
a
c

d
c

b
c

d
c

c c
a
c

d
c

b
c

d
c

c c
0

0
0

0
0

0
0

0
0

0

           
(D

.3
)
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D.2 Linear discrete time system matrices

F
=

                                  1
0

0
T
s

0
0

0
0

0
0

0
0

0
T
s
2
c
ψ
c
θ

2
T
s
2
c
ψ
sφ

sθ
2

−
T
s
2
c
φ
sψ

2
T
s
2
sφ

sψ
2

+
T
s
2
c
φ
c
ψ
sθ

2
0

0
0

0
1

0
0

T
s

0
0

0
0

0
0

0
0

T
s
2
c
θ
sψ

2
T
s
2
c
φ
c
ψ

2
+

T
s
2
sφ

sψ
sθ

2
T
s
2
c
φ
sψ

sθ
2

−
T
s
2
c
ψ
sφ

2
0

0
0

0
0

1
0

0
T
s

0
0

0
0

0
0

0
−
T
s
2
sθ

2
T
s
2
c
θ
sφ

2
T
s
2
c
φ
c
θ

2
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
T
s
cψ

cθ
T
s
cψ

sφ
sθ
−
T
s
cφ

sψ
T
s
sφ

sψ
+
T
s
cφ

cψ
sθ

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

T
s
cθ

sψ
T
s
cφ

cψ
+
T
s
sφ

sψ
sθ

T
s
cφ

sψ
sθ
−
T
s
cψ

sφ
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
−
T
s
sθ

T
s
cθ

sφ
T
s
cφ

cθ
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

                                  
(D

.4
)
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G =



Ts
2cψcθ
2 −Ts

2cφsψ−cψsφsθ
2

Ts
2sφsψ+cφcψsθ

2 0
Ts

2cθsψ
2

Ts
2cφcψ+sφsψsθ

2 −Ts
2cψsφ−cφsψsθ

2 0

−Ts
2sθ
2

Ts
2cθsφ
2

Ts
2cφcθ
2 −Ts

2

2
Tscψcθ Tscψsφsθ − Tscφsψ Tssφsψ + cφcψsθ 0
Tscθsψ Tscφcψ + sφsψsθ Tscφsψsθ − Tscψsφ 0
−Tssθ Tscθsφ Tscφcθ −Ts

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(D.5)



D.3 Noise matrices 89

D.3 Noise matrices

The short form kTσ = Tsσbias
2 is used.

Q
d

=

                                 T
s
σ
P
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
T
s
σ
P
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
T
s
σ
P
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
Q
d
4
4

Q
d
4
5

Q
d
4
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Q
d
4
5

Q
d
5
5

Q
d
5
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Q
d
4
6

Q
d
5
6

Q
d
6
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
T
s
σ
W

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

T
s
σ
W

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

T
s
σ
W

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
k
T
σ

                                 

(D
.6
)
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Where:

Q
d
4
4

=
T
s
(σ
a
2
(s
φ

sψ
+

cφ
cψ

sθ
)2

+
σ
a
2
(c
φ

sψ
−

cψ
sφ

sθ
)2

+
σ
a
2
cψ

2
cθ

2
)

Q
d
4
5

=
−
T
s
(σ
a
2
(c
φ

cψ
+

sφ
sψ

sθ
)(

cφ
sψ
−

cψ
sφ

sθ
)

+
σ
a
2
(s
φ

sψ
+

cφ
cψ

sθ
)(

cψ
sφ
−

cφ
sψ

sθ
)
−
σ
a
2
cψ

cθ
2
sψ

)

Q
d
4
6

=
−
T
s
(σ
a
2
cθ

sφ
(c
φ

sψ
−

cψ
sφ

sθ
)
−
σ
a
2
cφ

cθ
(s
φ

sψ
+

cφ
cψ

sθ
)

+
σ
a
2
cψ

cθ
sθ

)

Q
d
5
4

=
−
T
s
(σ
a
2
(c
φ

cψ
+

sφ
sψ

sθ
)(

cφ
sψ
−

cψ
sφ

sθ
)

+
σ
a
2
(s
φ

sψ
+

cφ
cψ

sθ
)(

cψ
sφ
−

cφ
sψ

sθ
)
−
σ
a
2
cψ

cθ
2
sψ

)

Q
d
5
5

=
T
s
(σ
a
2
(c
φ

cψ
+

sφ
sψ

sθ
)2

+
σ
a
2
(c
ψ

sφ
−

cφ
sψ

sθ
)2

+
σ
a
2
cθ

2
sψ

2
)

Q
d
5
6

=
−
T
s
(σ
a
2
cφ

cθ
(c
ψ

sφ
−

cφ
sψ

sθ
)
−
σ
a
2
cθ

sφ
(c
φ

cψ
+

sφ
sψ

sθ
)

+
σ
a
2
cθ

sψ
sθ

)

Q
d
6
4

=
−
T
s
(σ
a
2
cθ

sφ
(c
φ

sψ
−

cψ
sφ

sθ
)
−
σ
a
2
cφ

cθ
(s
φ

sψ
+

cφ
cψ

sθ
)

+
σ
a
2
cψ

cθ
sθ

)

Q
d
6
5

=
−
T
s
(σ
a
2
cφ

cθ
(c
ψ

sφ
−

cφ
sψ

sθ
)
−
σ
a
2
cθ

sφ
(c
φ

cψ
+

sφ
sψ

sθ
)

+
σ
a
2
cθ

sψ
sθ

)

Q
d
6
6

=
T
s
(σ
a
2
cφ

2
cθ

2
+
σ
a
2
cθ

2
sφ

2
+
σ
a
2
sθ

2
)

(D
.7
)



D.3 Noise matrices 91

Rd =



σGPS
2

TGPS
0 0 0 0 0 0 0

0 σGPS
2

TGPS
0 0 0 0 0 0

0 0 σGPS
2

TGPS
0 0 0 0 0

0 0 0 σV
2

TGPS
0 0 0 0

0 0 0 0 σV
2

TGPS
0 0 0

0 0 0 0 0 σV
2

TGPS
0 0

0 0 0 0 0 0 σbaro
2

Tmeas
0

0 0 0 0 0 0 0 σair
2

Tmeas


(D.8)
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Appendix E

Dubins path segment
lengths

This is a summary of the results from (Shkel and Lumelsky, 2001) where the
length of each type of segment is calculated directly.

Lets first introduce the normalized distance d with respect to the turning radius
ρ between the two waypoints w1 and w2:

d =
|w2 − w1|

ρ
(E.1)

The angle at the first waypoint α and second waypoint β is given by:

θ = atan2(w2y − w1y , w2x − w1x) mod 2π (E.2)
α = w1ψ − θ mod 2π (E.3)
β = w2ψ − θ mod 2π (E.4)

The length of each type of segment can then be calculated accordingly:
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LSL Dubins path:

tlsl = −α+ arctan
cosβ − cosα

d+ sinα− sinβ
mod 2π

plsl =
√

2 + d2 − 2 cos(α− β) + 2d(sinα− sinβ) (E.5)

qlsl = β − arctan
cosβ − cosα

d+ sinα− sinβ
mod 2π

RSR Dubins path:

trsr = α− arctan
cosα− cosβ

d− sinα+ sinβ
mod 2π

prsr =
√

2 + d2 − 2 cos(α− β) + 2d(sinβ − sinα) (E.6)

qrsr = −β + arctan
cosα− cosβ

d− sinα+ sinβ
mod 2π

LSR Dubins path:

tlsr = −α+ arctan
− cosα− cosβ

d+ sinα+ sinβ
− arctan

−2

plsr
mod 2π

plsr =
√
−2 + d2 + 2 cos(α− β) + 2d(sinα+ sinβ) (E.7)

qlsr = −β + arctan
− cosα− cosβ

d+ sinα+ sinβ
− arctan

−2

plsr
mod 2π

RSL Dubins path:

trsl = α− arctan
cosα+ cosβ

d− sinα− sinβ
+ arctan

2

prsl
mod 2π

prsl =
√
d2 − 2 + 2 cos(α− β)− 2d(sinα+ sinβ) (E.8)

qrsl = β − arctan
cosα+ cosβ

d− sinα− sinβ
+ arctan

2

prsl
mod 2π

RLR Dubins path:

trlr = α− arctan
cosα− cosβ

d− sinα+ sinβ
+
prlr
2

mod 2π

prlr = arccos
1

8

(
6− d2 + 2 cos(α− β) + 2d(sinα− sinβ)

)
mod 2π (E.9)

qrlr = α− β − trlr + prlr mod 2π
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LRL Dubins path:

tlrl = −α+ arctan
− cosα+ cosα

d+ sinα− sinβ
+
plrl
2

mod 2π

plrl = arccos
1

8

(
6− d2 + 2 cos(α− β) + 2d(sinα− sinβ)

)
mod 2π (E.10)

qlrl = β − α+ 2plrl mod 2π

Note the equations above calculates the normalised segment lengths with respect
to the turning radius ρ, thus in order to get the true length of each segment we
will have to multiply the segment lengths by the turning radius ρ:

t = ρ tnom (E.11)
p = ρ pnom (E.12)
q = ρ qnom (E.13)

The final Dubins path length is then given by:

L = t+ p+ q (E.14)

Notice that it will be beneficial to substitute all arctan function with the four
quadrant inverse tangent function atan2 when implementing the equations above.
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Appendix F

Speed, heading and altitude
controllers

The controllers used for the simulation is based on the work by Elkaim et al.
(2015). An overview of the controllers can be seen in Figure F.1 where the
desired heading angle ψd, desired z-position zd (denoted PosDD in the simula-
tion) and desired airspeed Vaird are used as set-points for the controllers. The
saturation blocks are used to limit the output from the controllers to the valid
input values for the aileron, throttle and elevator.

Throttle	control
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Transfer Fcn1 Saturation1
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Figure F.1: Controller overview



98 Speed, heading and altitude controllers

Figure F.2 shows an overview of the aileron controller. The first block shown
in Figure F.3 converts the heading error to a desired heading turning rate ψ̇d.
The heading turning rate is the converted to the desired roll angle according to
the following equation:

φd = atan2
(
ψ̇dVair, g0

)
(F.1)
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error out

PID roll
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Figure F.2: Aileron controller overview
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Figure F.3: Yaw to roll controller

Finally a PID-controller, shown in Figure F.4, is used as the output to the
aileron input.

The final PID-values used for the aileron controllers were:

Kpyaw2roll = 0.0049

Kiyaw2roll = 0.0035

Kdyaw2roll = 5.5851× 10−4 (F.2)
Kproll = 0.0349

Kiroll = 0.0873

Kdroll = 0
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Even though the Aerosonde UAV has a rudder input, we decided not to use it,
as the system is later to be implemented on a flying wing, which does not have
a rudder control surface.
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Figure F.4: Roll controller

An overview of the elevator controller can be seen in Figure F.5. The bottom
one is a feed forward controller that is used to prevent the UAV from loosing
altitude when turning. The feed forward term is a simple P-controller given by:

Kp

(
1

cosφ
− 1

)
(F.3)
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Figure F.5: Elevator controller overview

Figure F.6 shows the controller that converts the error in altitude to a desired
pitch angle θd. The error in pitch angle is then used as the input to a second
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controller, shown in Figure F.7. The output from this controller is added to the
output from the feed forward controller. The combined output is then used as
input to the elevator.
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Figure F.6: Altitude to pitch controller

The final PID-values used for the simulation were:

Kprollff2pitch = −0.5000

Kpalt2pitch = 1

Kialt2pitch = 0.1800

Kdalt2pitch = 0 (F.4)
Kppitch = 0.0087

Kipitch = 0.0087

Kdpitch = 0.0014

Figure F.8 shows the throttle controller. This controller is used to keep a con-
stant airspeed doing the flight. The output from this controller is added to
a constant Throttletrim, which is the trimmed throttle value needed for level
flight.

The final PID-values used for the throttle controller were:

Kpthr = 0.8000

Kithr = 0.1000 (F.5)
Kdthr = 0.0320

The output of all integrators were limited in order to acts as a simple anti-
windup mechanism. For instance this was needed when doing helices, as the
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time for it to reach the desired z-position could take quite some time, which
would cause a huge overshoot due to the integral term, if they were not limited.
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Appendix G

Exporting the Kalman filter
from Matlab to C++

The matrices used for the Kalman filter were first solved analytically and imple-
mented in Matlab. Since the designed Kalman filter is time-varying the system
model matrices needs to be updated in each loop. However the matrix assign-
ments can easily be exported to C code using the Matlab function ccode. The
code were then further refined using a custom bash script. Thus the tedious pro-
cess of writing down these terms can be done automatically, this is especially
useful when the order of the system is large, as it becomes almost impossible not
to make any mistakes when writing down the equations manually in C or C++.
The vector and matrix operations in the C++ code for the Kalman time update
and measurement update steps were done using the Eigen library1. The entire
code was then put into a C++ class. This procedure allowed us to automate the
process of solving the system model matrices for the Kalman filter and export
it to C++ code. This made is easy to expand the model during development and
include more states in the system.

By comparing the differences between the estimated states from the Matlab and
C++ implementation one can determine if the conversion from Matlab to C++ is
correct.

1http://eigen.tuxfamily.org

http://eigen.tuxfamily.org
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Figure G.1 shows a plot of the difference between the state estimates for the
Matlab and C++ implementation of the Kalman filter for the first simulation
presented in section 5.1. As it can be seen the difference between the two
is very small and is possible just due to differences in the implementation of
matrix operators and precision of the floating-point numbers used for the two
systems. Even the oscillations shown in Figure G.1a is only about 5 mm which
is much smaller than the precision of the GPS anyway.

All the other simulations had similar plots as well, thus the implementation in
Matlab and C++ were assumed to be the same.
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Simulink model

Figure H.1 shows an overview of the Simulink model used in this report. The
Aerosonde UAV block provided by the Aerosom Blockset1 is a blue block seen
in the upper left corner. The output from this block is then run through the
"Noise and bias system" block (middle right) that adds noise and biases on the
measurements. The measurements are then discretized and run through the
designed Kalman filter (bottom right). The estimated position of the UAV is
then used as the input for the Dubins path algorithm which outputs the desired
heading and the desired z-position (bottom left). The set-points and estimated
states are then used as the input to the controller block (middle left, just below
the Aerosonde UAV block) which stabilises the system. All yellow and turquoise
blocks are showing various values and are used for debugging. Orange blocks
are scopes which are also used for debugging. Pink blocks are constants set in
an external file.

1http://www.u-dynamics.com/aerosim/default.htm

http://www.u-dynamics.com/aerosim/default.htm
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